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We analyze theoretically and experimentally vortex configurations in mesoscopic superconducting squares.
Our theoretical approach is based on the analytical solution of the London equation using Green’s-function
method. The potential-energy landscape found for each vortex configuration is then used in Langevin-type
molecular-dynamics simulations to obtain stable vortex configurations. Metastable states and transitions be-
tween them and the ground state are analyzed. We present our results of the first direct visualization of vortex
patterns in micrometer-sized Nb squares, using the Bitter decoration technique. We show that the filling rules
for vortices in squares with increasing applied magnetic field can be formulated, although in a different manner
than in disks, in terms of formation of vortex “shells.”
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I. INTRODUCTION

The growing interest in studying vortex matter in meso-
scopic and nanopatterned superconductors is closely related
to recent progress in nanofabrication and perspectives of
their use in nanodevices manipulating single flux quanta.
As distinct from bulk superconductors, vortex states in
nanoscopic and mesoscopic samples are determined by the
interplay between the intervortex interaction �which is
modified due to the presence of boundaries� and the con-
finement. In general, the shape of a mesoscopic sample is
incommensurate with the triangular Abrikosov lattice, and as
a consequence, the resulting vortex patterns display strong
features of the sample shape and may differ strongly from a
triangular lattice. Strong finite-size effects in conjunction
with strong shape effects determine the vortex configura-
tions. For example, in mesoscopic disks vortices, as shown
theoretically1–6,9 and experimentally,7 form circular symmet-
ric shells �similar to two-dimensional �2D� system of charged
classical particles8�. Moreover, due to strong confinement ef-
fects in small disks, vortices can even merge into a giant
vortex �GV�, i.e., a single vortex containing more than one
flux quantum,4 as was recently confirmed experimentally.10

Furthermore, it was recently demonstrated11 that vortices can
merge into a cluster or a GV in micrometer-sized mesoscopic
niobium disks which is induced by strong disorder in com-
bination with rather weak confinement, while neither of these
effects alone would lead to a GV/cluster formation. Simi-
larly, shape- and symmetry-induced vortex patterns can be
formed in mesoscopic superconducting triangles,12,14,15

squares,12,16–18 or, in general, in symmetric polygons.12,13

However, unlike disks where the vortex patterns result from
the interplay between the discrete symmetry of the �triangu-
lar� vortex lattice and the cylindrical �C�� symmetry of the
disk, mesoscopic polygons have discrete symmetry that can
coincide �triangles, C3 symmetry� or include as a subgroup

�e.g., hexagons with C6 symmetry� the symmetry of the vor-
tex lattice. In such cases highly stable vortex configurations
are possible for some values of magnetic field �providing
commensurate numbers of vortices� because the vortex-
vortex interaction is enhanced by the effect of boundaries.
Strikingly, strong boundary effects can even lead to
symmetry-induced vortex states with antivortices14–16 �i.e.,
the symmetry of the vortex configuration with antivortices
can be restored by the generation of a vortex-antivortex pair�.

In contrast to C3n-symmetric �where n is an integer� poly-
gons, squares are incommensurate with triangular vortex lat-
tice for any applied magnetic field. The vortex-vortex inter-
action and the effect of boundaries are always competing in
mesoscopic squares. Resulting from this interplay: �i� the
ground state of the vortex system always involves nonzero
elastic energy and, as a consequence, �ii� there are metastable
states with energies close to the ground state �or, in principle,
the ground state even could be degenerate�. Early studies on
vortices in mesoscopic squares were either limited to very
small samples with characteristic sizes of the order of �
�where � is the coherence length� which were able to accom-
modate only few vortices,12 or they focused on the possibil-
ity of generation and stability of vortex-antivortex patterns in
squares.16–18 Here we present a systematic theoretical analy-
sis of vortex configurations in mesoscopic squares and their
first direct observation in micrometer-sized niobium squares
using the Bitter decoration technique. To study the formation
of vortex patterns and transitions between the ground and
metastable states, we analytically solve the London equation
using Green’s-function method, and perform molecular-
dynamics simulations. To obtain the stable vortex configura-
tions, we analyze the filling of squares by vortices with in-
creasing applied magnetic field and the formation of vortex
“shells,” similarly to those observed in disks.

The paper is organized as follows. The theoretical formal-
ism and the solution of the London equation using Green’s-
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function method, for a system of L vortices in a rectangle
sample, are described in Sec. II. In Sec. III, we discuss the
evolution of vortex configurations with magnetic field calcu-
lated using the solution of the London equation found in Sec.
II and the molecular-dynamics simulations �Sec. III A�. We
formulate the filling rules and discuss the formation of vortex
shells in mesoscopic superconducting squares in Sec. III B.
Metastable states and the transitions between them and the
ground state are analyzed in Sec. III C. In Sec. IV, we present
the results of our direct experimental observations of vortex
patterns in niobium squares using the Bitter decoration tech-
nique, and compare the calculated patterns with the experi-
mentally measured vortex configurations. The conclusions
are given in Sec. V.

II. THEORY: THE LONDON APPROACH

We consider a strong type-II superconductor �i.e., charac-
terized by the Ginzburg-Landau parameter �=� /��1,
where � is the London penetration depth and � is the coher-
ence length� with rectangular cross section in the x-y plane
and thickness d in the z direction. Note that the London
approach is applicable also for weak type II superconductors
in case of thin-film samples with thickness d�� where the
penetration depth is modified: �→ �=� /d2, or in case of
low vortex densities in rather large mesoscopic samples �i.e.,
with the lateral dimensions a, a��� where vortices are well
separated and the order parameter is �	�2=1 everywhere ex-
cept at the vortex cores. The latter case corresponds to our
experiments with micrometer-sized niobium squares as de-
scribed below. In our model the external magnetic field H is
applied normal to the x-y plane, i.e., along the z axis: h
=hz. We also assume that the vortex cores are straight lines
along the z direction. Then the local magnetic field can be
found by solving the London equation:

− �2�2h + h = 
0h�
i=1

L

��r − ri� , �1�

where 
0 is the flux quantum and �ri= �xi ,yi� , i=1, . . . ,L� are
the positions of L vortices. If we also neglect the distortion
of the external magnetic field due to the sample, i.e., assume
that the value of the magnetic field outside the sample near
its boundary is equal to the applied field, then the boundary
conditions for the magnetic field are:

h��a/2,y� = h�x,0� = h�x,b� = H . �2�

The geometry of the problem is shown in Fig. 1. Green’s-
function method for solving the London equation �Eq. �1��
with the boundary conditions �Eq. �2�� was previously used
by Sardella et al.19 However, they limited themselves to the
special case where one of the sides of the rectangle is much
larger than the other, i.e., a stripe. Such an approximation
considerably simplifies the problem but the resulting solution
missed the generality �the symmetry with respect to the per-
mutation x→y� and thus could not be used in our case of a
square: a=b. We seek a solution of Eq. �1� with the boundary
conditions �Eq. �2��, which is valid for a rectangle with arbi-
trary aspect ratio a /b. Green’s function associating with the

boundary problem defined by Eqs. �1� and �2� must satisfy
the following equation:

− �2�2G + G = ��x − x����y − y�� , �3�

and the boundary conditions

G��a/2,y� = G�x,0� = G�x,b� = 0. �4�

Multiplying Eq. �1� by G and Eq. �3� by h and subtract one
from another, we obtain

− �2�G�2h − h�2G� = G
0�
i=1

L

��r − ri� − h��x − x����y − y�� .

�5�

Integrating Eq. �5� over the sample area, we arrive at

− �2	
−a/2

a/2

dx	
0

b

dy�G�2h − h�2G�

= 	
−a/2

a/2

dx	
0

b

dy
G
0�
i=1

L

��r − ri� − h��x − x����y − y��� .

�6�

Further we use Gauss theorem,

− �2	
−a/2

a/2

dx	
0

b

dy�G�2h − h�2G�

= − �2�
boundary

dl
G
�h

�n
− h

�G

�n
� ,

where � /�n is the derivative in the normal direction to the
boundary, and the boundary conditions �Eqs. �4� and �2��,
and we find the expression for the magnetic field,

h�x�,y�� = H
1 − 	
−a/2

a/2

dx	
0

b

dyG�x,y,x�,y���
+ 
0�

i=1

L

G�xi,yi,x�,y�� . �7�

Therefore, the problem of finding the solution for the local
magnetic field is reduced to the determination of Green’s

FIG. 1. The cross section of a rectangular superconductor with
sides a and b. The external magnetic field H is applied along the z
axis, and its value is assumed to be constant outside the sample.
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function G�x ,y ,x� ,y��. In order to find a solution to Eq. �3�
with the boundary condition Eq. �4�, we expand Green’s
function in a Fourier series,

G�x,y,x�,y�� =
2

b
�
m=1

�

sin
m
y�

b
�sin
m
y

b
�gm�x,x�� . �8�

Note that the boundary conditions �Eq. �4�� are satisfied at
y=0,b. Further we substitute this expansion into Eq. �3� and
obtain

− �22

b
�
m=1

� 
 �2gm�x,x��
�x2 sin
m
y�

b
�sin
m
y

b
�

− 
m


b
�2

gm�x,x��sin
m
y�

b
�sin
m
y

b
�

+ sin
m
y�

b
�sin
m
y

b
�gm�x,x���

= ��x − x��
2

b
�
m=1

�

sin
m
y�

b
�sin
m
y

b
� , �9�

where we used the following �-function representation:

��y − y�� =
2

b
�
m=1

�

sin
m
y�

b
�sin
m
y

b
�

since ��2
bsin� m
y

b � , m=1,2 ,3. . .� forms a complete set of
orthonormal functions. As a result, we obtain the following
equation for the Fourier transform of Green’s function
gm�x ,x��,

− �2�2gm�x,x��
�x2 + �m

2 gm�x,x�� = ��x − x�� , �10�

where

�m = 
1 + �2
m


b
�2�1/2

. �11�

The functions gm�x ,x�� must satisfy the boundary conditions
gm��a /2,x��=0. In order to solve Eq. �10�, we first take its
Fourier transform,

− �2�i��2F��� + �m
2 F��� =

1

2

e−i�x�,

where

F��� =
e−i�x�

2
��2�2 + �m
2 �

,

from which we obtain a particular solution to Eq. �10�

gm�a→� =
1

2�m�
e−�m�x−x��/�

=
1

2�m�
�cosh��m�x − x��/�� − sinh��m�x − x����� .

The general solution of Eq. �10� reads as

gm =
1

2�m�
�cosh��m�x − x��/�� − sinh��m�x − x�����

+ A�x��sinh��mx/�� + B�x��cosh��mx/��

=
1

2�m�
�− sinh��m�x − x���� + C�x��sinh��mx/��

+ D�x��cosh��mx/��� .

Using the boundary conditions �Eq. �4�� we find the coeffi-
cients C�x�� and D�x��,

C�x�� = − coth��ma/2��sinh�x��;

D�x�� = tanh��ma/2��cosh�x�� .

Then the solution for gm�x ,x�� is given by

gm�x,x�� =
1

2��m sinh��ma/��

��cosh��m��x − x�� − a�/�� − cosh��m�x + x��/��� .

�12�

Inserting this result into Eq. �8�, we obtain the following
expression for Green’s function:

G�x,y,x�,y��

=
2

b
�
m=1

�

sin
m
y�

b
�sin
m
y

b
� 1

2��m sinh��ma/��

��cosh��m��x − x�� − a�/�� − cosh��m�x + x��/��� .

�13�

From it we obtain the following expression for the local
magnetic field:

h�x,y� = 
0�
i=1

L

G�xi,yi,x,y� + H� cosh��y − b/2�/��
cosh�b/2��

+
4

b
�
m=0

�
b

�2m+1
2 �2m + 1�


sin
 �2m + 1�
y

b
�

�
cosh��2m+1x/��

cosh��2m+1a/2��� . �14�

Note that this solution is valid for a rectangle with arbitrary
aspect ratio a /b and is a generalization of the earlier result
presented in Ref. 19.

Using the obtained solution or the London equation for
the local distribution of the magnetic field h�x ,y�, we obtain
the Gibbs free energy per unit length of an arbitrary vortex
configuration,

VORTEX STATES IN MESOSCOPIC SUPERCONDUCTING… PHYSICAL REVIEW B 78, 104517 �2008�

104517-3



G = �
i=1

L 
�i
shield + �

j=1

L

�ij
v� + �core + �field

=

0H

4
A
�
i=1

L � cosh��yi − b/2�/��
cosh�b/2��

+
4

b
�
m=0

�

�2m+1
−2 b

�2m + 1�

sin
 �2m + 1�
yi

b
� cosh��2m+1xi/��

cosh��2m+1a/2���
+


0
2

8
A
�
i=1

L

�
j=1

L

G�xi,yi,xj,yj� −
H2

8

� tanh�b/2��

b/2�
−

8


2 �
m=0

�
tanh��2m+1a/2��

��2m + 1��2m+1�2��2m+1a/2��� − L

0H

4
A
. �15�

Here, A=a�b is the area of the rectangle. The last two terms
are the energies associated with the external magnetic field
and the vortex cores, respectively. Green’s function in the
first term describes the interaction between vortices and also
the interaction between vortices and their images, which are
situated outside the sample. The second term represents the
interaction between the ith vortex and the shielding currents.
Note that in Ref. 19, the authors limited their consideration
to the case of a thin film such that �
� /b�2�1 and the term
“1” in Eq. �11� can be neglected. The London theory has a
singularity for the interaction between a vortex and its own
image �self-interaction�. We notice that when i= j Green’s
function does not converge. To avoid divergency, we apply a
cutoff procedure �see, e.g., Refs 20–22�, which means a re-
placement of �ri−r j� by a� for i= j. It was shown in Ref. 23
that the results of the London theory agree with those of the
Ginzburg-Landau theory, the vortex size should be chosen as
�2�, and therefore we take a=�2. The confinement energy is
given by �c=�i

shield+�ii.
In Figs. 2�a� and 2�b�, we plot the distribution of the con-

finement energy for mesoscopic squares with a=3� and a
=15�, correspondingly. In the mesoscopic square with a
=3�, Fig. 2�a�, the screening current extends inside the
square and interacts with all the vortices. But in the large
mesoscopic square �we call it “macroscopic”� with a=15�,
only the vortices which are close to the boundary feel the
screening current. In the mesoscopic square, vortices
strongly overlap with each other �see Fig. 2�c��, while in the
macroscopic square, the interaction between vortices is
rather weak and only the closest neighbors are important �see
Fig. 2�d��. This difference between small �mesoscopic� and
large �macroscopic� squares leads, in general, to the size de-
pendence of the vortex patterns in mesoscopic samples as it
was recently demonstrated for disks �see Ref. 9�.

III. THE EVOLUTION OF VORTEX PATTERNS
WITH MAGNETIC FIELD

A. Molecular-dynamics simulations of vortex patterns

Within the London approach, vortices can be treated as
pointlike “particles,” and it is convenient to employ molecu-
lar dynamics �MD� for studying the vortex motion driven by
external forces �see, e.g., Refs. 9, 11, 24, and 25�, similarly
to a system of classical particles.8 In Sec. II we obtained the
analytic expression for the free energy of a system of L vor-

tices as a function of the applied magnetic field �Eq. �15��.
The force felt by the ith vortex can be obtained by taking the
derivative of the energy in the following:

Fi = − �iG , �16�

where �i=
�

�xi
ex+ �

�yi
ey is the two-dimensional derivative op-

erator.
The overdamped equation of vortex motion can be pre-

sented in the following form:

�vi = Fi = �
j�i

Fij + Fself
i + FM

i + FT
i , �17�

where the first three terms are as follows: Fij is the force due
to the repulsive vortex-vortex interaction of the ith vortex
with all other vortices, Fself

i is the interaction force with the
image, and FM

i is the force of interaction with the external
magnetic field which enters the sample through the bound-
aries; � is the viscosity, which is set here to unity. Note that
Eq. �16� contains these three terms �with the free energy
defined by Eq. �15��, and in Eq. �17� we added a thermal
stochastic term FT

i to simulate the process of annealing in the
experiment. The thermal stochastic term should obey the fol-
lowing conditions:

�Fi
T�t�� = 0 �18�

and

�Fi
T�t�Fi

T�t��� = 2�kBT�ij��t − t�� . �19�

It is convenient to express the lengths in units of �, the fields
in units of Hc2, the energies per unit length in units of g0
=
0

2 /8
A ·1 /�2, and the force per unit length in units of f0
=
0

2 /8
A ·1 /�3, where A is the sample’s area. In our calcu-
lations we use the value of the Ginzburg-Landau parameter
�=6 taken from the experiment with Nb �see below�.

In order to find the ground-state vortex configurations in
squares, we perform stimulated annealing simulations by nu-
merically integrating the overdamped equations of motion
Eq. �17�. The procedure is as follows. First we generate a
random vortex distribution and set a high value of tempera-
ture. Then we gradually decrease the temperature to zero,
i.e., simulating the annealing process in real experiments
�see, e.g., Ref. 26�. To find the minimum-energy configura-
tion, we perform many simulation runs with random initial
distributions and count the statistics of the appearance of
different vortex configurations for each L. This procedure
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simulates9 the statistical analysis of experimental data with
simultaneous measurements of vortex configurations in ar-
rays of many �up to 300� practically identical samples. It was
used in experiments with Nb disks in Refs. 7 and 11 and also
in experiments with Nb squares presented in this paper.

B. Filling rules for vortices in squares with increasing
magnetic field: Formation of vortex shells

The results for the vortex patterns for different vorticities
L are shown in Figs. 3 and 4. With increasing applied mag-
netic field, vortex configurations evolve as follows: Starting
from a Meissner state with no vortex, the first vortex appears
in the center �see Fig. 3�a��, for L=2 the two are located
symmetrically on the diagonal �see Fig. 3�b��. Further in-
crease of the magnetic field leads to the formation of a tri-
angular vortex pattern having a common symmetry axis with
the square, which is the diagonal �see Fig. 3�c��. For L=4
vortices arrange themselves in a perfect square, Fig. 3�d�,
whose symmetry is commensurate with the sample and
therefore it turns out that this is a highly stable vortex

FIG. 2. �Color online� The profiles of the confinement energy
�c=�i

shield+�ii �measured in units of g0=
0
2 /8
A ·1 /�2, where A is

the area of the sample� for mesoscopic superconducting squares
with size �a� a=3� and �b� 15�. The Gibbs free-energy distributions
for squares with �c� a=3� and �d� 15� for the vortex state with
L=5.

FIG. 3. �Color online� The evolution of vortex configurations for
the states with vorticity increasing from L=1 to 12, in a supercon-
ducting square with a=3� �the same results found for larger
squares, e.g., with a=15��. The vortices in the outer shell are
shown by the blue �black� circles while the inner-shell vortices are
shown by the yellow �gray� circles. The formation of the second
shell starts when L=5.
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configuration.5,27 Note that even in the bulk the gain in the
elastic energy is very small during the transition from the
triangular vortex lattice to the square one, and consequently,
in the presence of a square boundary, it turns out that a
square vortex lattice can be easily stabilized �for commensu-
rate vortex numbers�. For vorticity L=5, vortices tend to
form either a pentagon, or a square with one vortex in the
center �see Fig. 3�e�; the transition between this configura-
tion and the pentagonlike pattern will be discussed below�.
The additional vortex appears in the center thus forming a
second shell in a similar way as in disks,6,7,9 but in the latter,
this occurred for a larger L-value �L=6�. To distinguish dif-
ferent shells and indicate the number of vortices in each
shell, we use the same notations as in Refs. 6, 7, and 9. For
example, the pentagonlike configuration and the pattern with
four vortices in the outer shell and one vortex in the center
are denoted as �5� and �1,4�, respectively. �It is clear that
vortex shells in squares are not as well defined as in disks
and sometimes it is a matter of choice how to define them.�
Compared with disks, which have C� symmetry, the C4 sym-
metry of squares induces a new element of symmetry in the
resulting vortex patterns. In other words, vortex patterns in
squares �tend to� acquire elements of the C4 symmetry even
if they are not arranged in a perfect square lattice. For ex-
ample, the calculated vortex patterns share one �L=6, Fig.
3�f�� or two �L=7 and 8, Figs. 3�g� and 3�h�, correspond-
ingly� symmetry axes of the square parallel to its side. This
tendency to share symmetry elements with the square bound-
ary remains also for larger vorticities as can be seen, e.g., in
Figs. 3�j�–3�l� for vorticities L=10, 11, and 12, respectively.
For the commensurate number of vortices L=9, a perfect
symmetric square-lattice pattern is formed.

Using the concept of vortex shells, we analyzed the filling
rules for mesoscopic superconducting squares with increas-
ing magnetic field. To summarize these rules, for L=1 to 4,
vortices are arranged in a single shell, the second shell ap-
pears when L=5, and then vortices fill the shells as follows:
As the vorticity L increases from L=5 to 9, the new vortices
fill the outer shell. Then the number of vortices in the inner
shell starts to increase for L�9 �see Figs. 3�j�–3�l��. This
occurs because the outer shell is formed by eight vortices
�i.e., three per each side� which turns out to be stable. Thus,
the new vortices fill the inner shell until L=12. Then, again,
the newly generated vortices start to fill the outermost shell
until L=16, when the number of vortices in the outermost
shell becomes 12, which is also stable �i.e., commensurate
with the square boundary�. The formation of the third shell
starts when the vorticity becomes L=17 �note that for L
=17 the vortices can arrange themselves either in a two-shell
configuration �5,12� or in a three-shell configuration �1,4,12�,
which occurs to have a slightly lower energy, see analysis
below�. In a similar way, the filling of shells occurs for larger
values of L �e.g., for 3-, 4-shell patterns, etc.�. As a general
rule, the outermost shells containing 4N vortices, where N is
an integer, are very stable. With increasing the density of
vortices, the average distance between them decreases. As a
result, the interaction between vortices becomes more and
more important leading to the formation of the triangular-
lattice phase away from the boundary. Therefore, the trian-
gular lattice is recovered for large vorticities being distorted
near the square boundaries. Note that for large enough L
vortices do not form a square lattice even for commensurate
vortex numbers �e.g., for L=25, 36, etc.� as it does for L
=4, 9, and 16. Some examples of two- and three-shell vortex
patterns are shown in Fig. 4.

C. The ground state and metastable states

The incommensurability of the square boundary with the
triangular vortex lattice creates metastable vortex configura-
tions. While in many cases metastable states are well sepa-
rated in energy from the ground state, in some cases, namely,
for borderline configurations having n and n+1 shells, the
lowest-energy metastable state can become almost indistin-
guishable from the ground state. In such cases, vortex states
with very close energies can have comparable probability to
be realized experimentally. An example of such a state is the
case L=5. The stable states for L=5 are shown in the insets
of Fig. 5. In order to examine which one is more stable, we
investigate the free energy as a function of the displacement
of one of the vortices while we allow the other vortices to
relax to their lowest-energy positions. We start with the pen-
tagonlike configuration �5� �the left inset� and we change the
position of this vortex moving it toward the center of the
square and let the other vortices adjust their positions accord-
ingly. At the end, we arrive at the square-symmetric state
�1,4�. We plot the free energy of the system as a function of
the displacement of this vortex from its equilibrium position,
and we repeat this procedure for all the vortices A, B, C, D,
and E �we always move only one vortex while all others
relax to minimize the free energy�. For any of the five vor-

FIG. 4. �Color online� The evolution of vortex configurations for
L=15–18 �a�–�d�, and for �e� L=25 to �f� 29, in a superconducting
square with a=3�. For vorticities ��a�–�d�� L=15–18, the outer-
most shell formed by 12 vortices is complete �commensurate with
the square boundary�, and with increasing magnetic-field vortices
fill inner shells. Note that when the inner shell also becomes com-
plete ��b� L=16, state �4,12��, the third shell starts to form for �c�
L=17. For states with larger vorticities, e.g., �e� L=25 and �f� L
=29, the vortex patterns are very close to a triangular lattice which
is distorted near the boundary.
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tices, this procedure leads to a barrier between the two states.
We notice that there are two possible pentagonlike configu-
rations �5� which share different symmetry axes with the
square, see Figs. 5�a� and 5�b�. The difference of their free
energy is less than 10−4. In Fig. 5�a� we see that the motion
of vortex C is accompanied with the lowest-energy barrier.
This is because vortices A, B, D, and E are already close to
their final positions in state �1,4�. Moving vortex B or D
leads to a higher energy barrier. Finally, moving vortex A or
E to the center is associated with the highest barrier and

passing over a saddle point �jump in G-G0�. Then we move
the central vortex of state �1,4� back to its initial positions in
state �5�. The highest-barrier transitions �i.e., curves A and E�
show a hysteretic behavior which is an indication of meta-
stable states.

In Fig. 5�b�, we show the results of the calculation of the
free energy as a function of displacement of a vortex, for a
different modification of the state �5�, i.e., when the vortex
configuration has the symmetry axis coinciding with the di-
agonal of the square �cf. Fig. 5�a��. Note that these two con-
figurations of state �5� have practically the same free energy
and thus equal probability to appear in experiment. Moving
vortex E, which is situated on the diagonal of the square �see
the left inset in Fig. 5�b��, is accompanied by the highest
energy barrier compared to moving other vortices. The re-
verse process �i.e., moving the central vortex to position E�
leads to a very high potential barrier, and the pentagonlike
state cannot be restored unless a random �thermal� force is
added to break the symmetry. Moving vortex B or C is ac-
companied by the lowest-energy barrier. State �1,4� has a
lower free energy than state �5�. According to our calcula-
tions, it is the ground state for L=5.

Similar transitions are found between two- and three-shell
vortex configurations for L=17 �see Fig. 6�. Twelve vortices
form the outermost shell and the other five can form either a
one-shell or two-shell configurations similarly as state L=5.
Again, we move one of the five vortices in the inner shell of
the state �5,12� to the center of the square. The analysis of
the free energy shows that the difference of the free energy
between the two states ���G��10−5� is much smaller com-
pared to the states for L=5 ���G��10−3�. The reason for this
is that for L=17, the twelve vortices in the outermost shell
can adjust themselves to lower the free energy, which create

FIG. 5. �Color online� The change of the free energy �G-G0�
versus the displacement R of one of the vortices in the initial
pentagon-shaped configuration from its initial position toward the
center �two different lines for each configuration correspond to in-
creasing and decreasing �R as shown by the arrows in �a��. G0 is
the free energy associated with external magnetic field and the vor-
tex cores �term “4” in Eq. �15��, which is independent of the posi-
tions of the vortices. The two stable states, the pentagonlike state
�5� and the square-symmetric state �1,4�, are shown in the insets.
The vortices are labeled by A, B, C, D, and E. Two different sym-
metry axes of the configuration �5� are shown by the dash-dotted
line in the insets of �a� and �b�, respectively. The side of the square
is a=3�. In both cases, the configuration with one vortex in the
center �1,4� has a lower energy than the pentagonlike pattern �5�.
Note that the curves for B and D �and for A and E� are slightly
different due to the fact that the configuration �5� is not perfectly
aligned with respect to the symmetry axes.

FIG. 6. �Color online� The change of the free energy �G-G0�
versus the displacement R of one of the vortex in the inner shell of
the state �5,12� from its initial position toward the center; G0 is
defined in the caption of Fig. 5. The change in the free energy due
to the movement of the vortices in the inner shells �i.e., �5,12� →
�1,4,12�� is damped by the movement of the vortices in the outer-
most shell which act as a “softer” wall than the boundary �in the
case of the transition �5� → �1,4�, see Fig. 5�. The movement of the
vortices in the outmost shell causes more saddle points. The two
states, �5,12� and �1,4,12�, have very close free energies.
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much “softer” walls for the five vortices in the inner shell
than the sample boundary. Thus, the change of the free en-
ergy due to the movement of the vortices in the inner shells
can be more or less compensated by the movement of the
vortices in the outermost shell.

IV. EXPERIMENTAL OBSERVATION OF VORTEX
CONFIGURATIONS IN MESOSCOPIC NB SQUARES

To visualize the corresponding vortex configurations ex-
perimentally we used the well-known Bitter decoration tech-
nique which is based on in situ evaporation of 10–20 nm Fe
particles that are attracted to regions of magnetic field cre-
ated by individual vortices and thus allow their visualization
�details of the technique are described elsewhere28�. The me-
soscopic samples for this study were made from a 150 nm
thick Nb film deposited on a Si substrate using magnetron
sputtering. The film’s superconducting parameters were:
transition temperature Tc=9.1 K; magnetic-field penetration
depth ��0��90 nm; coherence length ��0��15 nm; and
upper critical field Hc2�0��1.5 T. Using e-beam lithogra-
phy and dry etching with an Ar ion beam through a 250 nm
thick Al mask, the films were made into arrays of small
square “dots” of four different sizes, with the side of the
square, a, varying from 1 to 5 �m. Each array typically
contained 150–200 such dots. A whole array was decorated
in each experiment, allowing us to obtain a snapshot of up to
100 vortex configurations in dots of the same shape and size,
produced in identical conditions �same applied magnetic
field H and temperature T, same decoration conditions�. It
was therefore possible to simultaneously visualize vortex
configurations for several different vorticities L �in samples
of different sizes� and also to gain enough statistics for quan-
titative analysis of the observed vortex states in terms of
their stability, sensitivity to sample imperfections, and so on.
Below we present the results obtained after field cooling to
T�1.8 K in perpendicular external fields ranging from H
=20 to 60 Oe. We note that the above temperature �1.8 K�
represents the starting temperature for the experiments. Ther-
mal evaporation of Fe particles usually leads to a temporary
increase in temperature of the decorated samples but the in-
crease never exceeded 2 K in the present experiments, leav-
ing the studied Nb dots in the low-temperature limit, T
�0.5 Tc.

Figure 7 shows examples of vortex configurations ob-
served for vorticities L=2–13. The images shown in Fig. 7
were obtained in several different experiments and on
samples of different sizes �see figure caption�. We note that
the same vorticity L could be obtained for different combi-
nations of the applied field and the size of the square, e.g.,
L=6 was found for H=60 Oe, a=2 �m, and H=40 Oe, a
=2.5 �m—see images in Figs. 8�b� and 7�e�, respectively.
Sometimes two different vorticities were found in the same
experiment for nominally identical squares, e.g., both L=9
and L=10 were found for H=35 Oe and a=3.5 �m—see
images in Figs. 7�g�–7�i�. The latter finding can be explained
by slightly different shapes of individual squares or by an
extra vortex captured during field cooling; see Ref. 7 for a
more detailed discussion, where the same effect was found

for circular mesoscopic disks. Overall, the vorticity as a
function of the applied field H showed the same behavior as
that found earlier for circular disks,7 i.e., the square dots
showed strong diamagnetic response for small vorticities L
�10 �also observed earlier in disks with a strong disorder11�
while for larger vorticities the extra demagnetization per vor-
tex saturated at �
 /
�0.2, in excellent agreement with ear-
lier numerical studies.12

Most of the vortex configurations shown in Fig. 7 repre-
sent just one of several possible states for each vorticity
�with the exception of images �h� and �i� which both corre-
spond to L=10�. Indeed, for most vorticities we found more
than one well-defined vortex configuration and some of these
were found with almost the same probability, indicating that,
in agreement with theory described above, vortices in meso-

FIG. 7. Scanning electron microscope �SEM� images of vortex
configurations observed experimentally for vorticities L=2–13.
Vortex positions are indicated by clusters of small white �Fe� par-
ticles. �a� L=2; sample size �side of the square� a�2.5 �m, H
=20 Oe; �b� L=3; a�2 �m, H=35 Oe; �c� L=4; a�2.4 �m,
H=40 Oe; �d� L=5; a�2.4 �m, H=40 Oe; �e� L=6; a
�2.5 �m, H=40 Oe; �f� L=7; a�2 �m, H=60 Oe; �g� L=9;
a�3.5 �m, H=35 Oe; �h� L=10; a�3.5 �m, H=35 Oe; �i� L
=10; a�3.5 �m, H=35 Oe; �j� L=11; a�2.5 �m, H=60 Oe;
�k� L=12; a�2.6 �m, H=60 Oe; �l� L=13; a�5 �m, H
=20 Oe.
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scopic squares form not only the ground, but also metastable
states, and the energies of the latter are often very close to
the energy of the ground state. This conclusion follows from
our statistical analysis of all observed vortex configurations
which resulted in histograms such as those shown in Fig. 8
for L=2, 4, 5, and 6. For L=2 and 4, the most frequently
observed states agree with the ground states found theoreti-
cally �see Figs. 3�b� and 3�d�� and the metastable states ap-
pear to have similar energies, as they are found with similar
probabilities. As expected, both states for L=2 and two of
the states for L=4 have vortices sitting along the symmetry
axes of the square, with the diagonal axis being slightly pref-
erable. The third state for L=4 �on the right-hand side in Fig.
8�a�� is more unusual in that the vortices are sitting in the
apexes of a rhombus that is slightly rotated with respect to
the diagonal of the square. Although this particular state did
not come out in the numerical simulations,29 it was found
with a high probability in experiment and, moreover, the
rhombus-based vortex configurations were also found for
larger vorticities both in experiment �see, e.g., Fig. 7�l� for
L=13� and theory �see rhombic inner shells for L=12 and 16
in Figs. 3�l� and 4�b�, respectively�.

For L=6, one of the two most frequently observed states
�also shown in Fig. 7�e�� corresponds exactly to the ground
state found numerically �Fig. 3�f�� but the state found in
experiment with the highest probability is the more symmet-
ric two-shell configuration with the outer shell having the
same pentagon shape as that found for L=5. This L=6 state
can be viewed as a direct precursor of the two-shell states for
L=7 and 9, which were found as ground states both in theory
�Figs. 3�g� and 3�i�� and experiment �Figs. 7�f� and 7�g��. For
L=5, two possible states—a two-shell configuration with one
vortex in the center �1,4� and four vortices in the corners and
a pentagonlike configuration �5�—were found in experiment
and in numerical simulations. However, numerical simula-
tions found a slightly lower energy for the two-shell configu-
ration �1,4� �see Fig. 5�, while in experiment the pentagon-
shaped configuration was found to appear more frequently.
This discrepancy is unlikely to be related to the nonideal
character of the experimental squares: As we show below,
neither the roughness of the boundaries, nor the presence of
some pinning in the experimental samples have any notice-
able effect on the observed vortex configurations, due to
strong confinement �see, e.g., Fig. 2�. It is possible that, due
to the very small difference in free energies between the two
states �which becomes practically negligible for samples
with a���, the vortex configurations for L=5 are particu-
larly sensitive to the exact sample size �in experiment the
squares are almost ten times larger than in the analysis of
Fig. 5�. The sensitivity of vortex configurations to sample
size was studied in detail for circular disks �see Ref. 9� and
was indeed found to affect the stability of some �but not all�
vortex states. For higher vorticities, L=7–13, we found well-
defined two-shell configurations most of which correspond to
the stable configurations found numerically. The outer shell
in these configurations was either square �see Figs. 7�g�–7�k�
for L=9–12�, circular �L=7, Fig. 7�f�� or rhombic �L=13,
Fig. 7�l�� with vortices of the inner shell either sitting along
one of the symmetry axes of the square, as for L=2, or
forming a triangle, as for L=3. For certain matching vortici-
ties �L=9 and 12�, the observed two-shell configurations cor-
respond to a square vortex lattice.

We note that the irregularities of the sample shape and
uneven boundaries of some of our dots have, surprisingly, no
discernible effect on the observed configurations of vortices
�i.e., the vortices form regular, symmetric patterns�. For ex-
ample, the dots in Figs. 7�j� and 7�k� have especially rounded
corners and very rough boundaries but the vortex configura-
tions have square symmetries. Similarly, the same L=6 state
was found in dots with rounded corners, as in Fig. 7�e�, and
in almost perfect squares, as in the image shown in Fig. 8�b�.
Furthermore, we found that for a given value of L the ob-
served configurations did not depend on the sample size or
the applied field, at least within the studied field range—see
Fig. 9 for an example.

Finally, we compared the experimentally observed posi-
tions of vortices within the square dots with those found
numerically and found an excellent agreement, as demon-
strated by Fig. 9. Here we show a superposition of theoreti-
cal images from Fig. 3 and experimental images for the same
vortex configurations. Two of the images �Figs. 9�d� and
9�e�� compare the same theoretical configuration with experi-

FIG. 8. Histograms of different vortex states observed for vor-
tices L=2, 4 �for squares with a=2 �m� �a� and L=5 �for squares
with a=2 �m� and 6 �b� �a=2 �m and a=2.5 �m�. SEM images
of the corresponding vortex configurations are shown as insets.
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mental images obtained on dots of different sizes in different
applied fields �H=40 Oe, a=2.5 �m and H=60 Oe and a
=2 �m, respectively� illustrating the point made above that
the vortex configurations do not depend on the sample size
and/or applied field.

Overall, despite the inevitable presence of some disorder
in our samples, which was not taken into account in the
calculations, there is a very good agreement between the
observed vortex configurations and the calculated vortex pat-
terns. The main features of the vortex states revealed by
experiment is formation of vortex shells with predominantly
square symmetry for vorticities L�7 and vortex patterns fol-
lowing the main symmetry axes of the square for small vor-
ticities L�4. The two intermediate vorticities L=5 and 6
appear to be a special case: Here the mismatch between the
square shape of the dot and the natural symmetry of the
vortex lattice is more difficult to accommodate and the pre-
ferred vortex configurations turned out to be the pentagon-

shaped shell for L=5 and three different patterns for L=6,
none of which has the fourfold symmetry of the square.

V. CONCLUSIONS

We performed a systematic study of vortex configurations
in mesoscopic superconducting squares and compared the
results with vortex patterns observed experimentally in
micrometer-sized Nb squares using the Bitter decoration
technique.

In the theoretical analysis we relied upon the analytical
solution of the London equation in mesoscopic squares by
using Green’s-function method and the image technique. The
stable vortex configurations were calculated using the tech-
nique of molecular-dynamics simulations simulating the
stimulated annealing process in experiments.

We revealed the filling rules for squares with growing
number of vortices L when gradually increasing the applied
magnetic field. In particular, we found that for small L vor-
tices tend to form patterns that are commensurate with the
symmetry of the square boundaries of the sample. The filling
of “shells” �similar to mesoscopic disks� occurs by periodic
filling of the outermost and internal shells. With increasing
vorticity, the outermost shell is filled until it is complete �i.e.,
the number of vortices in it becomes 4N, where N is an
integer, i.e., commensurate with the square boundary�. Then
vortices fill internal shells until the number of vortices be-
comes large enough to create the outermost shell with 4�N
+1� vortices. Again, after that vortices fill internal shells.
With increasing vorticity, the shell structure becomes less
pronounced, and for large enough L the vortex patterns in
squares becomes a triangular lattice distorted near the bound-
aries.
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